New Structural Type in Manganese Carboxylate Chemistry via Coupled Oxidation/Oxide Incorporation: Potential Insights into Photosynthetic Water Oxidation

Sheyi Wang, ${ }^{\dagger}$ Hui-Lien Tsai, ${ }^{\text {, Karl S. }}$ Sagen, ${ }^{\dagger}$
David N. Hendrickson, ${ }^{\text {, }}$, and George Christou",
Department of Chemistry, Indiana University
Bloomington, Indiana 47405-4001
Department of Chemistry, Emory University
Atlanta, Georgia 30322
Department of Chemistry-0358
University of California at San Diego
La Jolla, California 92093-0358

Received May 20, 1994
There continues to be great interest in the mechanism by which the tetranuclear Mn aggregate at the photosynthetic water oxidation center (WOC) of green plants and cyanobacteria binds $\mathrm{H}_{2} \mathrm{O}$ molecules and oxidatively couples them to $\mathrm{O}_{2} .{ }^{1}$ The WOC cycles through a number of oxidation levels (S_{n} states; $n=0-4$), with the highest (S_{4}) relaxing spontaneously to the lowest (S_{0}) with O_{2} evolution. ${ }^{1,2}$ Although a variety of spectroscopic and physicochemical studies have been performed, the precise structure of the WOC Mn ${ }_{4}$ aggregate at any S_{n} state remains unclear. ${ }^{1}$ In any event, the more important questions are (i) what is the mechanism by which two $\mathrm{H}_{2} \mathrm{O}$ molecules are brought together, deprotonated, and activated to oxidative coupling to O_{2} (together with the precise order in which these occur) and (ii) what is the nature of concomitant structural changes to the Mn_{4} aggregate during this process?

In this regard, several speculative mechanistic schemes based on Mn_{4} structures have been put forward. ${ }^{3,4}$ Brudvig and Crabtree proposed ${ }^{3 a, b}$ a transformation involving hypothetical $\left[\mathrm{Mn}_{4} \mathrm{O}_{4}\right.$] cubane and known [$\mathrm{Mn}_{4} \mathrm{O}_{6}$] adamantane core units at the lower and higher S_{n} states, respectively. In contrast, Vincent and Christou proposed ${ }^{4}$ a stepwise incorporation of oxides, converting a known [$\mathrm{Mn}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}$] complex into a known [$\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{Cl}$] and hypothetical $\left[\mathrm{Mn}_{4} \mathrm{O}_{4}\right]$ at high S_{n} states (eq 1). ${ }^{5,6}$ The common

$$
\begin{equation*}
\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right] \xrightarrow[\substack{-2 \mathrm{H}^{+} \\+\mathrm{Cl}}]{+\mathrm{H}_{2} \mathrm{O}}\left[\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{Cl}\right] \xrightarrow[\substack{-2 \mathrm{H}^{+} \\-\mathrm{Cl}}]{+\mathrm{H}_{2} \mathrm{O}}\left[\mathrm{Mn}_{4} \mathrm{O}_{4}\right] \rightarrow\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]+\mathrm{O}_{2} \tag{1}
\end{equation*}
$$

theme in these two schemes is incorporation of substrate $\mathrm{H}_{2} \mathrm{O}$ molecules into the Mn_{4} aggregate, increasing the $\mathrm{O}^{2-}: \mathrm{Mn}$ ratio and yielding the substrate deprotonation and activation required

[^0]for water oxidation. A tetranuclear complex with an [$\mathrm{Mn}_{4} \mathrm{O}_{4}$] cubane core is currently unknown in $\mathrm{Mn} / \mathrm{O}^{2-}$ chemistry, so its postulated conversion to $\mathrm{Mn}_{4} \mathrm{O}_{6}$ or its reductive elimination of O_{2} (eq 1) cannot be tested. However, the conversion of $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]$ ($4 \mathrm{Mn}{ }^{\mathrm{III}}$) to $\left[\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{Cl}\right]$ ($3 \mathrm{Mn}^{111}, \mathrm{Mn}^{1 V}$) complexes has been demonstrated, but only by Cl^{-}-induced disproportionation (eq 2) rather than a true oxidation. ${ }^{6}$ Thus, there has been no precedence
\[

$$
\begin{equation*}
3\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]^{8+}+2 \mathrm{Cl}^{-} \rightarrow 2\left[\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{Cl}\right]^{6+}+2 \mathrm{Mn}^{2+}+2 \mathrm{Mn}^{3+} \tag{2}
\end{equation*}
$$

\]

available for the suggestion that oxidation of a Mn_{4} aggregate is followed by $\mathrm{H}_{2} \mathrm{O}$ incorporation to increase the $\mathrm{O}^{2-}: \mathrm{Mn}$ ratio. We herein describe the first such demonstrated transformation which establishes the feasibility of and provides a precedent for such a coupled oxidation/oxide-incorporation step during the water oxidation cycle.
The complex $\left(\mathrm{NBu}^{n_{4}}\right)\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{7}(\mathrm{dbm})_{2}\right](1 ; \mathrm{dmbH}=$ dibenzoylmethane) may be readily prepared in $\sim 70 \%$ yield by treatment of $\left(\mathrm{NBu}^{n}\right)\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right) 9\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{7}$ with 2 equiv of $\mathrm{Na}(\mathrm{dbm})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Complex 1 in MeCN displays two quasireversible oxidations at 0.48 and 1.17 V vs ferrocene and an irreversible reduction at -0.66 V . Further investigation of the first oxidation couple confirmed it as a one-electron process ($n \approx 1$ by coulometry at 0.65 V). Generation and isolation of an oxidized product was therefore sought by controlled potential electrolysis.

After preliminary investigation, the following optimized procedure was developed. Complex 1 in MeCN (not dried) containing $\mathrm{NBu}_{4} \mathrm{ClO}_{4}$ (~ 14 equiv) was electrolyzed under air at 0.65 V . During the electrolysis ($60-75 \mathrm{~min}$), dbmH (1 equiv) in $\mathrm{MeCN} / \mathrm{NBu}_{4} \mathrm{ClO}_{4}$ was added dropwise. On completion of the experiment, the precipitated brown solid of $\left[\mathrm{Mn}_{4} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}\right.$ $(\mathrm{dbm})_{3}$] (2) was collected by filtration; the yield was $70-80 \%$ based on eq 3. In optimizing this preparation, the following

$$
\begin{align*}
{\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{7}(\mathrm{dbm})_{2}\right]^{-}+\mathrm{dbmH}+\mathrm{H}_{2} \mathrm{O} } & \xrightarrow{--} \\
{\left[\mathrm{Mn}_{4} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4}(\mathrm{dbm})_{3}\right] } & +3 \mathrm{RCO}_{2} \mathrm{H} \tag{3}
\end{align*}
$$

observations were made: (i) omission of dbmH and use of distilled MeCN and an Ar atmosphere gave only a 10% yield of 2 ; (ii) use of undistilled MeCN under air in (i) leads to an increased yield of 25%; (iii) addition of dbmH to the filtrate of (ii) leads to precipitation of more 2 and a total yield of $\mathbf{4 1 \%}$; and (iv) addition of the dbmH to the initial solution prior to electrolysis leads to a yield of 2 of $\sim 25 \%$. These observations are consistent with eq 3 , involving incorporation of exogenous dbmH and $\mathrm{H}_{2} \mathrm{O}$ into the generated, oxidized form of 1 , leading to a product with an increased $\mathrm{O}^{2-:} \mathrm{Mn}$ ratio.
Single crystals of $2.3 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ can be grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexanes. ${ }^{8}$ The structure of 2 (Figure 1) consists of a $\left[\mathrm{Mn}_{4} \mathrm{O}_{3}\right]^{7+}$ partial cubane core. Metric parameters and the absence of a Jahn-Teller distortion at $\mathrm{Mn}(1)$ indicate this to be the $\mathrm{Mn}^{\mathrm{IV}}$ ion, and the other metal ions are JT-elongated $\mathrm{Mn}^{\text {III }}$. Each of the latter possesses a chelating dbm group, and three $\mathrm{PhCO}_{2}{ }^{-}$groups bridge each $\mathrm{Mn}^{I I I} \ldots . \mathrm{Mn}^{\text {IV }}$ pair. The latter distances are $2.787(2)-2.802(3) \AA$, consistent with the $\left[\mathrm{Mn}_{2}(\mu-\mathrm{O})_{2}\right]$ unit. The structure of 2 is thus similar to previously-reported $\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{Cl}$ -

[^1]

Figure 1. ORTEP representation of 2 at the 50% probability level. Selected distances (\AA) and angles (deg): $\mathrm{Mn}(1) \cdots \mathrm{Mn}(2), 2.802(3) ; \mathrm{Mn}(1) \cdots \mathrm{Mn}-$ (3), 2.780(2); $\mathrm{Mn}(1) \cdots \mathrm{Mn}(4), 2.787(3) ; \mathrm{Mn}(2) \cdots \mathrm{Mn}(3), 3.277(2) ; \mathrm{Mn}-$ (2) $\cdots \mathrm{Mn}(4), 3.432(2) ; \mathrm{Mn}(3) \cdots \mathrm{Mn}(4), 3.197(2) ; \mathrm{Mn}(1)-\mathrm{O}(1), 1.856(8)$; $\mathrm{Mn}(1)-\mathrm{O}(2), 1.835(7) ; \mathrm{Mn}(1)-\mathrm{O}(3), 1.859(8) ; \mathrm{Mn}(2)-\mathrm{O}(1), 1.932(7) ;$ $\mathrm{Mn}(2)-\mathrm{O}(3), 1.935(8) ; \mathrm{Mn}(3)-\mathrm{O}(1), 1.912(7) ; \mathrm{Mn}(3)-\mathrm{O}(2), 1.942(7) ;$ $\mathrm{Mn}(4)-\mathrm{O}(2), 1.920(7) ; \mathrm{Mn}(4)-\mathrm{O}(3), 1.947(7) ; \mathrm{Mn}(3)-\mathrm{O}(7), 2.267(10)$; $\mathrm{Mn}(4)-\mathrm{O}(7), 2.173(9) ; \mathrm{Mn}(2)-\mathrm{O}(6), 2.164(9) ; \mathrm{Mn}(3)-\mathrm{O}(7)-\mathrm{Mn}(4)$, 92.1(4); $\mathrm{Mn}(3)-\mathrm{O}(2)-\mathrm{Mn}(4), 111.7(4) ; \mathrm{Mn}(2)-\mathrm{O}(1)-\mathrm{Mn}(3), 116.9(4)$; $\mathrm{Mn}(2)-\mathrm{O}(3)-\mathrm{Mn}(4), 124.2(4)$.

Figure 2. Plots of effective magnetic moment ($\mu_{\text {eff }}$) per $\mathrm{Mn}_{4}(\mathbb{\square})$ and molar magnetic susceptibility (\bullet) us temperature for $\left.\mathrm{Mn}_{4} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}\right)$ (dbm) ${ }_{3}(\mathbf{2})$. The solid lines are fits to the experimental data; see text for fitting parameters.
$\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{3}(\mathrm{dbm})_{3}(3)$, except that the latter has a $\mu_{3}-\mathrm{Cl}$ bridging the $\mathrm{Mn}^{\mathrm{III}}$ ions (and giving virtual $C_{3 v}$ symmetry). ${ }^{6}$ In contrast, 2 has a $\mu_{3}-\mathrm{PhCO}_{2}^{-}$group in this role, with $\mathrm{O}(6)$ terminally coordinated to $\mathrm{Mn}(2)$ and O (7) bridging $\mathrm{Mn}(3)$ and $\mathrm{Mn}(4)$; the Cl^{-}in 3 and the PhCO_{2}^{-}in 2 occupy JT elongation sites. The molecule has virtual C_{s} symmetry, the mirror plane passing through $\mathrm{Mn}(1), \mathrm{Mn}(2)$, and $\mathrm{O}(2)$. As a result, the $\mathrm{Mn}^{\mathrm{III}} . . \mathrm{Mn}^{\mathrm{III}}$ distances span a much greater range (3.197(2)-3.432(2) \AA) than in 3 (3.237(5)-3.264(5) \AA).

Complex 2 was investigated by solid-state magnetic susceptibility studies in the range $5-320 \mathrm{~K}$. The effective magnetic moment ($\mu_{\text {eff }}$) per Mn_{4} gradually increases from $7.81 \mu_{\mathrm{B}}$ at 320.0 K to a maximum of $9.24 \mu_{\mathrm{B}}$ at 20.0 K and then drops slightly to $8.63 \mu_{\mathrm{B}}$ at 5.01 K . The data were fit to an equation derived employing the C_{s} symmetry of $\mathbf{2}$ but assuming (reasonably) that all $\mathrm{Mn}^{1 I I} \mathrm{Mn}^{\text {IV }}$ interactions are equivalent. An excellent fit (Figure 2) was obtained with (using the $\hat{H}=-2 J S_{i} S_{j}$ convention): J_{1}
 $\mathrm{cm}^{-1}, J_{3}=J\left(\mathrm{Mn}^{111} . . \mathrm{Mn}^{\text {III }}\right)=+2.1 \mathrm{~cm}^{-1}$, and $g=1.85$, where J_{3} refers to the unique $\mathrm{Mn}(3) / \mathrm{Mn}(4)$ pair. These values are similar to those for $3\left(J\left(\mathrm{Mn}^{\left.\mathrm{III} \ldots . . \mathrm{Mn}^{\mathrm{IV}}\right)=-28.4 \mathrm{~cm}^{-1}, J\left(\mathrm{Mn}^{\mathrm{III}} . . \mathrm{Mn}^{\mathrm{III}}\right)=}\right.\right.$ $\left.+8.3 \mathrm{~cm}^{-1}\right) .{ }^{6}$ As for 3 , complex 2 has an $S=9 / 2$ ground state.

Figure 3. Change in the ground state spin value as a function of the J_{3} / J_{1} ratio; J_{1} and J_{2} have been held constant at -28.5 and $+2.8 \mathrm{~cm}^{-1}$, respectively.

In the past, we have offered the $\left[\mathrm{Mn}_{4} \mathrm{O}_{3} \mathrm{Cl}\right]^{6+}$-containing complexes such as 3 as potential models of an S_{n} state of the WOC. ${ }^{5}{ }^{6}$ However, a major drawback has been their $S=9 / 2$ ground states; \mathbf{S}_{2}, for example, has been generated in forms possessing $S=1 / 2$ or $5 / 2$ states, ${ }^{9}$ but no evidence for a $S=9 / 2$ state is available. Although the $S=1 / 2$ and $S=5 / 2$ forms are reasonably assumed to differ slightly in overall structure/ conformation, no detailed proposal for a type of structure and an associated coupling scheme that can readily give both a $S=1 / 2$ and a $S=5 / 2$ state has been put forward. The C_{s} symmetry of 2, however, allows such a scheme to be presented (Figure 3). J_{1} and J_{2} are difficult to vary significantly, but J_{3} should be particularly sensitive to the nature of oxygen atom O (7) (i.e., carboxylate as in $2, \mathrm{OR}^{-}, \mathrm{OH}^{-}$or O^{2-}). Figure 3 summarizes the changein ground state S as a function of the J_{3} / J_{1} ratio, J_{1} and J_{2} being kept constant. It can be clearly seen that S can change dramatically, from $S=9 / 2,7 / 2,5 / 2,3 / 2$, and $1 / 2$. A value of J_{3} $\approx 0.7 J_{1}=-20 \mathrm{~cm}^{-1}$ is sufficient to yield an $S=5 / 2$ state, as seen in the $g \approx 4 S_{2}$ state, whereas $J_{3} \approx 2 J_{1} \approx-55 \mathrm{~cm}^{-1}$ is sufficient to yield an $S=1 / 2$ state, as seen in the normal ("multiline") S_{2} state. These values of J_{3} might reasonably be expected if $O(7)$ were an OH^{-}and O^{2-} atom, respectively. Thus, it is clear that a precedent is provided by 2 and Figure 3 for how the ground state S value of a Mn_{4} aggregate could vary significantly with little structural change. Attempts to prepare analogues of 2 with $O(7)$ replaced by other oxygen-based groups are currently in progress to probe this matter further, as are additional studies of the conversion of 1 to 2 .

In summary, one-electron oxidation of a $\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\right]^{8+}$ complex leads to spontaneous incorporation of a third O^{2-} to give a novel $\left[\mathrm{Mn}_{4} \mathrm{O}_{3}\right]^{7+}$ core, a type of process speculatively suggested in the past as possibly involved in the WOC catalytic cycle. Its demonstration now provides precedence for this possibility.

Acknowledgment. This work was supported by NIH Grants GM 39083 and HL 13652.

Supplementary Material Available: Data collection and refinement details and listings of atomic coordinates and thermal parameters for complex 2 (7 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^2] Acla 1992, 1099, 25.

[^0]: ${ }^{\dagger}$ Indiana University.
 Emory University.
 University of California at San Diego.
 (1) (a) Debus, R. J. Biochim. Biophys. Acla 1992, 1102, 269 and references therein. (b) Ghanotakis, D. F.; Yocum, C. F. Annu. Rev. Plant Physiol. Mol. Biol. 1990, 41, 255. (c) Manganese Redox Enzymes; Pecoraro, V. L., Ed.; VCH Publishers: New York, 1992.
 (2) (a) Kok, B.; Forbush, B.; McGloin, M. Pholochem. Pholobiol. 1970, 11, 457. (b) Joloit, P.; Barbieri, P.; Chabaud, R. Ibid. 1969, 10, 309.
 (3) (a) Brudvig, G. W.; Crabtree, R. H. Proc. Nall. Acad. Sci. U.S.A. 1986, 83, 4586. (b) Brudvig, G. W.; DePaula, J. C. In Progress in Pholosynthesis Research; Biggins, J., Ed.; Martinus Nijhoff: Dordrecht, 1987; pp 491-498. (c) Pecoraro, V. L. In ref 1c; pp 197-231. (d) Armstrong, W. H. In ref 1c; pp 261-286. (e) Proserpio, D. M.; Hoffmann, R.; Dismukes, G. C. J. Am. Chem. Soc. 1992, 114, 4374. (f) Bentsen, J. G.; Micklitz, W.; Bott, S. G.; Lippard, S. J. J. Inorg. Biochem. 1989, 36, 226.
 (4) (a) Vincent, J. B.; Christou, G. Inorg. Chim. Acla 1987, 136, L41. (b) Christou, G.; Vincent, J. B. Biochim. Biophys. Acla 1988, 895, 259.
 (5) (a) Hendrickson, D. N.; Christou, G.; Schmitt, E. A.;Libby, E.; Bashkin, J. S.; Wang, S.; Tsai, H.-L.; Vincent, J. B.; Boyd, P. D. W.; Huffman, J. C.; Folting, K.; Li, Q.; Streib, W. E. J. Am. Chem. Soc. 1992, 114, 2455. (b) Vincent, J. B.; Christmas, C.; Chang, H.-R.; Li, Q.; Boyd, P.D. W.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1989, 111, 2086.
 (6) Wang, S.; Folting, K.; Streib, W. E.; Schmitt, E. A.; McCusker, J. K.; Hendrickson, D. N.; Christou, G. Angew. Chem., Inl. Ed. Engl. 1991, 30, 305.

[^1]: (7) Wang, S.; Huffman, J. C.; Folting, K.; Streib, W. E.; Lobkovsky, E. B.; Christou, G. Angew. Chem., Inl. Ed. Engl. 1991, 30, 1672.
 (8) Anal. Calcd (found) for $\mathrm{C}_{73} \mathrm{H}_{53} \mathrm{O}_{17} \mathrm{Mn}_{4}$: $\mathrm{C}, 61.66$ (61.4); $\mathrm{H}, 3.76$ (3.75); $\mathrm{Mn}, 15.45$ (15.3). Crystal data for $2.3 /{ }_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$: monoclinic, $P 2_{1} / n$, $a=15.161(3), b=21.577(4)$, and $c=22.683(5) A ; \beta=108.04(3)^{\circ} ; Z=$ $4 ; V=7056(3) \AA^{3} ; d_{\text {calc }}=1.458 \mathrm{~g} \cdot \mathrm{~cm}^{-3} ; T=173(2) \mathrm{K}$. The structure was solved using SHELXL-92. A total of 7418 independent reflections were refined using full-matrix least-squares on F^{2} to final R indices $(I>2 \sigma(I))$ of $R 1=$ 0.0863 and $w R 2=0.2180$. The phenyl rings were included as rigid bodies. In the final refinement cycles, non-hydrogen and hydrogen atoms were refined with anisotropic and isotropic thermal parameters, respectively. One $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate molecule had 100% occupancy, and the other only 50%.

[^2]: (9) Haddy, A.; Dunham, W. R.; Sands, R. H.; Aasa, R. Biochim. Biophys.

